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• Combining Pretrained & learnable speaker
representations are better than using a
single representation in TTS

• Generative speaker pretraining (e.g. voice
conversion) outperforms discriminative
pretraining

• Ranked 2nd in track 2A and 3rd in track 2B
of ICASSP 2021 M2VoC challenge

II. Pretrained & Learnable Speaker Representations

IV. Experiments V. Takeaway

* These authors contribute equally
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Challenges
• Extracting speaker and style information from limited references
• Generalized to different speakers/styles

Proposed: use them all
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• D-vector [1]
• X-vector [2]

• Learnable:

• Embedding table
• Global style token (GST) [3]

Fixed during training

• Pretrained:

III. Generative Pretraining of Speaker Representations
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AdaIN (one-shot) voice conversion (VC) [4]
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ICASSP 2021 M2VoC Challenge

• Multi-speaker TTS by either a pretrained or a learnable speaker representation

• Mandarin TTS
• Evaluated in

• Quality
• Speaker similarity
• Style similarity

Track 
1A

Track 
1B

Track 
2A

Track 
2B

# references 100 100 5 5

External data No Yes No Yes

• AIShell-3 + M2VoC official dataset (including the testing speakers)

• 96 hours
• 230 speakers

Performance of different speaker representations

Ratio of utterances passing a speaker verification system

Speaker representation Results (↑)

TTS Model
Pretrained Learnable SV accuracy

D-vec X-vec VC Embed GST Track 1 Track 2

Tacotron 2

√ .772 .367

√ .785 .377

√ .942 .727

√ .630 .703

√ .102 .050

FastSpeech 2

√ .977 .323

√ .973 .623

√ .980 .837

√ .988 .490

√ .778 .390

Speaker representation Results (↑)

TTS Model
Pretrained Learnable SV accuracy

D-vec X-vec VC Embed GST Track 1 Track 2

FastSpeech 2

√ .980 .837

√ √ .978 .747

√ √ .992 .860

√ √ .983 .937

√ √ .982 .783

√ √ √ .988 .897

√ √ √ √ √ .990 .887

Combining multiple speaker representations Speaker representation scatter plots

Ratio of utterances passing a speaker verification system

Subjective evaluation

MOS on speaker similarity and naturalness

X-vec VC Embed VC+Embed

Quality (↑) 3.47±.13 3.61±.13 3.65±.13 3.55±.12

Similarity (↑) 3.25±.13 3.19±.14 3.27±.13 3.38±.14

Official subjective evaluation
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