Few-Shot Spoken Language Understanding Via Joint Speech-Text Models

Chung-Ming Chien¹, Mingjiamei Zhang², Ju-Chieh Chou¹, Karen Livescu¹ TTIC¹, The University of Chicago²

• We use speech-text models for few-shot & zero-shot Spoken Language Under-standing (SLU).

- We use speech-text models for few-shot & zero-shot Spoken Language Under-standing (SLU).

- Match the performance of previous models with 0-20% of speech data.

- We use speech-text models for few-shot & zero-shot Spoken Language Under-standing (SLU).
- We analyze pre-trained & fine-tuned speech-text models.

- Match the performance of previous models with 0-20% of speech data.

- We use speech-text models for few-shot & zero-shot Spoken Language Under-standing (SLU).
- We analyze pre-trained & fine-tuned speech-text models.

- Match the performance of previous models with 0-20% of speech data.

- Explain the zero-shot text-to-speech transferability of speech-text models.

- We use speech-text models for few-shot & zero-shot Spoken Language Under-standing (SLU).
 - Match the performance of previous models with 0-20% of speech data.
- We analyze pre-trained & fine-tuned speech-text models.
 - Explain the zero-shot text-to-speech transferability of speech-text models.
 - Suggest fine-tuning with bottom layers frozen, which improves zero-shot performance.

- Models studied:
 - SpeechLM^[1]
 - SpeechUT^[2]

- Models studied:
 - SpeechLM^[1]
 - SpeechUT^[2]

[1] Z. Zhang, et al, "SpeechLM: Enhanced speech pre-training with unpaired textual data," preprint arXiv:2209.15329, 2023. [2] Z. Zhang, et al, "SpeechUT: Bridging speech and text with hidden-unit for encoder-decoder based speech-text pre-training," in EMNLP, 2022.

0 0 0 0 0 0 0 0

- Models studied:
 - SpeechLM^[1]
 - SpeechUT^[2]

- Models studied:
 - SpeechLM^[1]
 - SpeechUT^[2]

- Models studied:
 - SpeechLM^[1]
 - SpeechUT^[2]

- Models studied:
 - SpeechLM^[1]
 - SpeechUT^[2]

- We use speech-text models for few-shot & zero-shot Spoken Language Understanding (SLU).
- We analyze pre-trained & fine-tuned speech-text models.
 - Explain the zero-shot text-to-speech transferability of speech-text models.
 - Suggest fine-tuning with bottom layers frozen, which improves zero-shot performance.

- Match the performance of previous models with 0-20% of speech data.

- Assumptions
 - Limited labeled speech data
 - More text data

- Assumptions
 - Limited labeled speech data
 - More text data

- Assumptions
 - Limited labeled speech data
 - More text data

Experimental Setups

- SLU tasks: SLUE Benchmark^[3]
 - Sentiment Analysis (SA)
 - Classification: "positive," "neutral," or "negative" sentiments
 - Named Entity Recognition (NER)
 - Sequence labeling
- speech data
- Other details follow the default setup of the SLUE benchmark

[3] S. Shon, et al, "SLUE: New benchmark tasks for spoken language understanding evaluation on natural speech," in ICASSP, 2022.

Speech-text models fine-tuned with labeled text data + different amounts of labeled

Sentiment Analysis

Zero-shot performance comparable to models using full speech data.

Sentiment Applysis	Labeled Data		Prior work: Speech-Only	Speech-Text	
Accuracy (%)	Speech	Text	HuBERT	SpeechLM-P	SpeechLM-H
Boolinoo	1 hr	_		36.9	37.7
Dasennes	12.8 hrs	_	43.0	45.6	45.3
	_	full		45.2	45.2
Proposed	10 mins	full		45.2	38.3
	1 hr	full		46.4	43.4

Sentiment Analysis

Zero-shot performance comparable to models using full speech data.

Sentiment Applysis	Labeled Data		Prior work: Speech-Only	Speech-Text	
Accuracy (%)	Speech	Text	HuBERT	SpeechLM-P	SpeechLM-H
Boolinoo	1 hr	_		36.9	37.7
Dasennes	12.8 hrs	_	43.0	45.6	45.3
	_	full		45.2	45.2
Proposed	10 mins	full		45.2	38.3
	1 hr	full		46.4	43.4

Sentiment Analysis

Zero-shot performance comparable to models using full speech data.

Sentiment	Labeled Data		Prior work: Speech-Only	Speech-Text	
Analysis Accuracy (%)	Speech	Text	HuBERT	SpeechLM-P	SpeechLM-H
Populinaa	1 hr	_		36.9	37.7
Dasennes	12.8 hrs	-	43.0	45.6	45.3
	_	full		45.2	45.2
Proposed	10 mins	full		45.2	38.3
	1 hr	full		46.4	43.4

 SpeechUT has great zero-shot performance.

 SpeechUT has great zero-shot performance.

- SpeechUT has great zero-shot performance.
- Speech+text fine-tuning is better than speech-only fine-tuning.

- SpeechUT has great zero-shot performance.
- Speech+text fine-tuning is better than speech-only fine-tuning.

- SpeechUT has great zero-shot performance.
- Speech+text fine-tuning is better than speech-only fine-tuning.
 - Outperforms HuBERT (speechonly) with 20% of speech data.

 We use speech-text models for few-shot & zero-shot Spoken Language Under-standing (SLU).

- Match the performance of previous models with 0-20% of speech data.

- We analyze pre-trained & fine-tuned speech-text models.

 - performance.

- Explain the zero-shot text-to-speech transferability of speech-text models.

- Suggest fine-tuning with bottom layers frozen, which improves zero-shot

- Average Neuron-Wise Correlation (ANC)^[4] $\frac{1}{d} \sum_{i=1}^{a} corr(X_i, Y_i)$
- with $X, Y \in \mathbb{R}^d$ representing different views (e.g. text & speech) of the same data instance.

- Average Neuron-Wise Correlation (ANC)^[4] $\frac{1}{d}\sum_{i=1}^{l} corr(X_i, Y_i)$
- with $X, Y \in \mathbb{R}^d$ representing different views (e.g. text & speech) of the same data instance.

- Average Neuron-Wise Correlation (ANC)^[4] $\frac{1}{d}\sum_{i=1}^{J} corr(X_i, Y_i)$
- with $X, Y \in \mathbb{R}^d$ representing different views (e.g. text & speech) of the same data instance.

- Average Neuron-Wise Correlation (ANC)^[4] $\frac{1}{d}\sum_{i=1}^{l} corr(X_i, Y_i)$
- with $X, Y \in \mathbb{R}^d$ representing different views (e.g. text & speech) of the same data instance.

- Average Neuron-Wise Correlation (ANC)^[4] $\frac{1}{d}\sum_{i=1}^{l} corr(X_i, Y_i)$
- with $X, Y \in \mathbb{R}^d$ representing different views (e.g. text & speech) of the same data instance.

- Average Neuron-Wise Correlation (ANC)^[4] $\frac{1}{d}\sum_{i=1}^{l} corr(X_i, Y_i)$
- with $X, Y \in \mathbb{R}^d$ representing different views (e.g. text & speech) of the same data instance.

- Average Neuron-Wise Correlation (ANC)^[4] $\frac{1}{d}\sum_{i=1}^{l} corr(X_i, Y_i)$
- with $X, Y \in \mathbb{R}^d$ representing different views (e.g. text & speech) of the same data instance.

- Average Neuron-Wise Correlation (ANC)^[4] $\frac{1}{d}\sum_{i=1}^{l} corr(X_i, Y_i)$
- with $X, Y \in \mathbb{R}^d$ representing different views (e.g. text & speech) of the same data instance.

- Average Neuron-Wise Correlation (ANC)^[4] $\frac{1}{d} \sum_{i=1}^{a} corr(X_i, Y_i)$
- with $X, Y \in \mathbb{R}^d$ representing different views (e.g. text & speech) of the same data instance.

- Average Neuron-Wise Correlation (ANC)^[4] $\frac{1}{d}\sum_{i=1}^{J} corr(X_i, Y_i)$
- with $X, Y \in \mathbb{R}^d$ representing different views (e.g. text & speech) of the same data instance.

- Average Neuron-Wise Correlation (ANC)^[4] $\frac{1}{d}\sum_{i=1}^{J} corr(X_i, Y_i)$
- with $X, Y \in \mathbb{R}^d$ representing different views (e.g. text & speech) of the same data instance.

[4] M. Del and M. Fishel, "Cross-lingual similarity of multilingual representations revisited," in AACL, 2022.

 $corr(X_i, Y_i)$: how much pre-trained and fine-tuned models differ.

 $corr(X_i, Y_i)$: whether speech & text representations are aligned.

 Speech-text models learn aligned speech & text representations in bottom layers.

 Speech-text models learn aligned speech & text representations in bottom layers.

- Speech-text models learn aligned speech & text representations in bottom layers.
- Pre-trained & fine-tuned models are similar in bottom layers and differ more in top layers.

- Speech-text models learn aligned speech & text representations in bottom layers.
- Pre-trained & fine-tuned models are similar in bottom layers and differ more in top layers.
 - Fine-tuning affects top layers more.

_	

 $corr(X_i, Y_i)$: how much pre-trained and fine-tuned models differ.

_	

_	

• We compare

_	

- We compare
 - Models fine-tuned on the same task with different input modalities.

4	al	iti	þ	S
d	al	iti	e	S
b	al	iti	e	S
b	al	iti	e	S
b	al	iti	e	S
	al	iti 	e	S
	al	iti 	e	S
		iti 	e	S

- We compare
 - Models fine-tuned on the same task with different input modalities.
 - Models fine-tuned on different tasks with the same input modality;

4	al	iti	þ	S
d	al	iti	e	S
b	al	iti	e	S
b	al	iti	e	S
b	al	iti	e	S
	al	iti 	e	S
	al	iti 	e	S
		iti 	e	S

- We compare
 - Models fine-tuned on the same task with different input modalities.
 - Models fine-tuned on different tasks with the same input modality;
- During fine-tuning, the task makes a larger difference than the input modaily to top layers.

4	al	iti	þ	S
d	al	iti	e	S
b	al	iti	e	S
b	al	iti	e	S
b	al	iti	e	S
	al	iti 	e	S
	al	iti 	e	S
		iti 	e	S

Bottom layers align speech & text representations.

- Bottom layers align speech & text representations.
 - Should not be affected by fine-tuning.

- Bottom layers align speech & text representations.
 - Should not be affected by fine-tuning.
- Top layers are task specific.

- Bottom layers align speech & text representations.
 - Should not be affected by fine-tuning.
- Top layers are task specific.
 - Should be fine-tuned.

- Bottom layers align speech & text representations.
 - Should not be affected by fine-tuning.
- Top layers are task specific.
 - Should be fine-tuned.

How about fine-tuning only top layers and keeping bottom layers frozen?

Fine-Tuning with Bottom Layers Frozen

 F_1 scores for NER with varying number of frozen layers during fine-tuning

Fine-Tuning with Bottom Layers Frozen

All-speech & few-shot: slight performance reduction.

 F_1 scores for NER with varying number of frozen layers during fine-tuning

Fine-Tuning with Bottom Layers Frozen

- All-speech & few-shot: slight performance reduction.
- Zero-shot: significant improvements in text-to-speech transferability.

 F_1 scores for NER with varying number of frozen layers during fine-tuning

Conclusion

- Speech-text models for few-shot SLU.
 - Speech-text models exhibit zero-shot transferability from text to speech. - Few-shot performance matches previous work trained with only 20% of
 - speech data.
- Analysis of speech-text models.
 - Bottom layers are task-agnostic and top layers are task-specific.
 - Freezing bottom layers enhances zero-shot performance.