Self-Supervised Pre-Trained Voice Conversion

Chung-Ming Chien

- * Work done at National Taiwan University
- Collaborated with Yist Y. Lin, Jheng-Hao Lin, Hung-yi Lee and Lin-shan Lee *
- * Published at IEEE ICASSP 2021 & InterSpeech 2021

Background

Voice Conversion

And more applications...

Self-Supervised Learning (SSL) Representations

Encoding

Automatic Speech Recognition

Generation

Speech Resynthesis

Else

Speaker Verification

4

SOTA performance with 1 linear layer

 \rightarrow text-like

Proposed: Encoding & Generation in One Model

Voice Conversion Model

Prior Arts

Prior Art 1: Exemplar-Based Voice Conversion

Heavily handcrafted → end-to-end + self-supervised representations

Prior Art 2: Any-to-Any Voice Conversion

Proposed Methods

Nodel Architecture

Attention Module

Exemplar-based Voice Conversion

Training

Testing

Experiments

Experimental Setup

- Training
 - VCTK corpus (109 speakers)
- Testing
 - seen speaker (VCTK)
 - unseen speakers (CMU)
 - one-shot conversion

- Compared SSL Features
 - CPC (contrastive predictive coding)
 - APC (autoregressive predictive coding)
 - Wav2Vec 2.0
- Non SSL Features
 - Mel spectrograms
 - PPG (phoneme posteriorgram trained with text annotations)

Automatic Speaker Similarity Evaluation

- Off-the-shelf speaker verification system

- the percentage of outputs passing the system (the higher the better)

Subjective Evaluation

- 5-scale Mean Opinion Score (MOS) of synthetic utterances
 - Speaker similarity
 - Naturalness

Compared with Previous Works

Compared with previous works that are also

- One-shot		4.0
 Any-to-any voice conversion 		3.5
		3.0
- Parallel-data-free	core	2.5
	OS S	2.0
	Μ	1.5
		1.0
		0.5
		0.0

[1] Chou et al., One-Shot Voice Conversion by Separating Speaker and Content Representations with Instance Normalization [2] Qian et al., AUTOVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss 18

MOS Score for Speaker Similarity and Naturalness **Speaker Similarity** Naturalness

Demo

Attention Analysis

- Same sentence, different speakers
- Attention map alignment from the Transformer block

Source Speaker "Please call Stella."

Target Speaker "Please call Stella."

Converted "Please call Stella."

Conclusion

Conclusion

- A SOTA approach to any-to-any voice conversion
 - One-shot and parallel-data-free
 - Show the advantage of sequence speaker features over fixeddimensional embeddings
- annotation
 - Compare different SSL features
 - SSL features are better than traditional features

Combine SSL encoding & generation in a voice conversion task without any

Future Work

- The bottleneck has to be carefully monitored to balance the content correctness and speaker information leakage
 - Better disentanglement of speaker and content information
 - Will discrete SSL features be more text-like?

Questions?